Developing Field or Well Specific Corrosion Models

using DownHole SAT®

© French Creek Software, Inc

Develop Field or Well Specific Corrosion Models

History and corrosion modeling can increase your confidence in evaluating and choosing metallurgy for a new well in an existing field. DownHole SAT provides an easy, straight forward method for organizing existing corrosion data for different metalluriges into a field or well specific model.

You need:

- Historic brine analysis, temperature, pCO2, pH2S (if applicable).
- · Observed corrosion rates on metallurgies of interest.
- Inhibitor dosages, if desired and available.

Model Development

Navigate to the LABORATORY menu and select the INPUT LAB DATA Module. This menu is on the main, Windows style menu.

Choose corrosion rate model development and the initial parameters to model (you can revise the model and parameters at any time).

You can select any parameters that are:

- input into the program (like pCO2, temperature)
- calculated by the program (like Calcite saturation, buffer capacity).
- Or optional inputs (like corrosion inhibitor dosages).

Entering Data

History and corrosion modeling can increase your confidence in evaluating and choosing metallurgy for a new well in an existing field. DownHole SAT provides an easy, straight forward method for organizing existing corrosion data for different metalluriges into a field or well specific model.

New Inhibitor Data Input						
Inhibitor Name	Raw Data File					
Inhibitor Purpose	Output File					
Property Modeled						
Molecular Weight	 ID #					
% Orthophosphate as PO4 % Zinc as Zn PO4 % Zinc as Zn						
% Organicphosphate as PO4	% Silicate as SiO2					
Inhibitor Dissociation Constants						
pK0 pK1 pK2	pK3 pK4 Correct for Protonation					
рК5 рК6 рК7	pK8 pK9 #of pKs					
Property Variable	Transform Lower Upper Limit					
Rate	Log(X)					
Variable 1 pCO2	Log(X) -99.00000 -99.00000					
Variable 2 Buffer Capacity	AS IS -99.00000 -99.00000					
Variable 3 Temperature						
Variable 4 pH	AS IS -99.00000 -99.00000					
Variable 5 pH2S	LOG(X)99.0000099.00000					
Variable 6	-99.00000 -99.00000					
ОК	Cancel					

Enter the Brine Chemistry, Corrosion Rate Data

Enter multiple analysis (similar to MULTI-MIX)

Water Chemistry Input							
Sample Date	24/4/2015	Time 00	:00	ID#	Rep	ort Date 24/	4/2015
Sample Desci	ription					[Flows	
						Brine Flow	0.00
						Oil Flow	
Calcium	1200	Iron	0.00	H2S	1661	(BPD)	0.00
(as CaCO3)	1200	(as Fe)	0.00	(as H2S)	1001	Gas Flow (MMCF/D)	0.00
Magnesium (as CaCO3)	0.00	Ammonia (as NH3)	0.00	Silica (as SiO2)	0.00	C2 - C5 Acids -	
Barium (as Ba)	0.00	Aluminum (as Al)	0.00	Phosphate (as PO4)	0.00	C2	0.00
Strontium (as Sr)	0.00	Manganese (as Mn)	0.00	Bromine (as Br)	0.00	C3	0.00
Sodium (as NaCl)	1247	Zinc (as Zn)	0.00	Fluoride (as F)	0.00	C4	0.00
Potassium (as K)	0.00	Boron (as B)	0.00	Nitrate (as NO3)	0.00	C5	0.00
Lithium (as Li)	0.00	Chloride (as NaCl)	0.00	Temperature (as °C)	0.00	[REC #	
рН	0.00	Sulfate (as SO4)	0.00	Density (g/mL)	1.00	1 of	GO TO #
Induc. time (sec)	0.00	Acidity (as CO2)	0.00	Pressure (psia)	800.00	39	
Corrosion rate (as mpy)	0.00	M Alkalinity (as HCO3)	1200	pCO2 (Atm.)	0.200	NEXT	Deactivate
Pitting index (as mpy)	0.00	P Alkalinity (as CO3)	0.00	pH2S (Atm.)	0.500	PREVIOUS	Activate
Comments		Oxalic acid (as C2O4)	0.00	Dosage (mg/L)	0.000		
ОК	Copy Char	ge Units Cor	relate Recalcula	te Display Re	sult Print Res	ult Paste	Cancel

Press CORRELATE

After entering brines and data, press the Correlate button.

New Inhibitor Data Input				x
Print Graph Close				
Inhibi	Inhibitor Modelled:			
Inhibi	tor Purpose:	Corrosion		
Raw De	ta File:	c:\dhsat\COR\CO3	2H2SBuftest.COR	
Output	File:	\OHSAT\INHIB\CO3	2H2SBuftest.INH	
	-002	Buf Can Tom		101
Tel	arcost LOC(Y)	NONE 1/0	р. рп рт коме	ph2s
Coef	8 85 1 24	(A AA1 -714 A	R2 -A 17	8 28
Std. Error	1.84 8.14	< 0.001 115	92 0.36	8.58
Sig.Level	0.65 < 0.001	0.75 0.5	55 0.64	8,74
R-SQR	0.842 Corre	lation Problems? M	NO	
ANAL.	OBSERVED PREI	DICTED DIFFERENCE	% ERROR	
	0.10000 0	.11567 0.0156	15.67251	
	0.15000 0	.13827 -0.0197 -	-13.15196	
:	0.21000 0	16/09 -0.0429 ·	-20.43258	
	0.20000 0	20431 -0.0134	-3.31014	
	8 42868 B	32997 -0.0044	-21 43561	
	0.81000 0	82644 0.0164	2.83871	
	1.46888 1	38714 -0.1528 -	-10,46963	
	1,95000 1	84527 -0.1047	-5,37073	
	2.46000 2	65837 0.1983	7.73891	
16	2.96868 2	99932 0.0393	1.32862	
11	3.47000 3	62592 0.1559	4.49342	
12	3,99000 4	28214 0.2921	7.32183	
1:	eljeseee e	.35901 0.3890 6	618.02058	
14	0.93000 0	.37892 -0.5598 -	-68.11589	
19	1.32000 0	.38203 -0.9379 -	-71.05773	
16	0.64000 0	45582 -0.1841 -	-28.77742	
1	0.59000 0	49348 -0.0965	-16.35826	
	0.20060 0	52925 0.3292	164.62966	
15	0.55000 0	.36213 0.1821	11.33351 228.97869	

Significance Levels

Check significance levels for each parameter. If desired go back to the spec sheet to change the parameters modeled.

Prepare Metallurgy File (Product File Format)

Prepare a metallurgy file in the Input Product / Input Metallurgy form.

Inhibitor Formulation Input Form					
Formulation Name	CO_2 Carbon Steel Description Example				
Product File Name co2example.prd					
Inhibitor 1	CO2 H2S Buf Test 100.000	%			
Inhibitor 2		%			
Inhibitor 3		%			
Inhibitor 4		%			
Inhibitor 5		%			
Inhibitor 6		%			
Inhibitor 7		%			
Minimum Dosage	0.000 (mg/L) % Actives	%			
Password	% Water	%			
OK Calc 9	% Set Limits More ENCRYPT ON Delete File Help Cano	cel			

Modeling

Evaluate the model in the Source Water, Waterflood, or Multi-Mix modules by selecting the appropriate Product/Metallurgy Model file. Predictions output as graphs and in tables.

You can compare TREATED versus UNTREATED profiles when corrosion inhibitor dosage data is used to develop the models.

There are ultra-expensive general models available which include parameters to make models applicable to a very broad range of wells. These can be difficult to use, require unavailable specifications and data, may or may not accurately. Modeling a specific well or field eliminates the need for many of the variables that expand a model form a specific, to a general model.

The DownHole SAT Laboratory Edition provides an alternative and allows increased accuracy in many cases. Similar models can be used for inhibitor modelling, when data is available. View the Video Tutorial: http://www.frenchcreeksoftware.com/tutorial/create-oilfield-corrosion-model/

French Creek

© 2015 French Creek Software, Inc.

French Creek P. O. Box 68 1220 Valley Forge Road, Ste. 21 Valley Forge, PA 19481-0068 USA

Office: 610-935-8337 Fax: 610-935-1008 Email: info@frenchcreeksoftware.com

Support

support@frenchcreeksoftware.com

Video Tutorials www.frenchcreek.net/tutorial

Online Technical Library

www.frenchcreek.net/online-library