DownHole SAT MA Treatment Modeling Software

modeling & prediction

All French Creek modeling applications enable users to model chemistry over a range of parameters including: temperature, pH, pressure, and %mixture.

scale prediction

Simultaneously models 18+ relevant mineral scales. Modules include: single brine, injection well, and mixture of up to 12.

corrosion

All editions include CO₂-H₂S corrosion model. Generate field/well specific models with Laboratory Edition.

inhibitor

Premium Editions enable users to model common raw materials and custom formulations. Modeling includes dosage suggestion and inhibitor limitations

mixing & water reuse

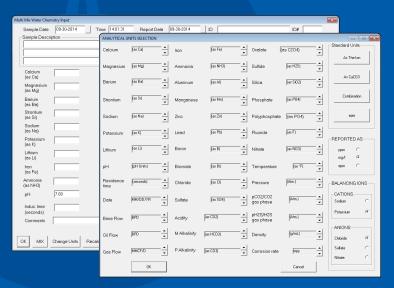
Users can copy/paste streams to be included in a mixture of up to 12 brines. The final completed mix can be used in an injection well or in another application, such as reverse osmosis or cooling water (in a French Creek Water Reuse Suite).

new in 2015

Well Log

pressure temperature profile

The DownHole SAT Well Log module adds the ability to profile scale potential and treatment requirements from bottom hole, to the separator, and after flashing to atmospheric pressure. Results can be viewed in table form or as color coded bar graphs from bottom hole to the surface. Treated and Untreated color coding can be selected to compare the impact of treatment.


simple input

All French Creek programs are designed to be used on the fly, not requiring hours of tedious model setup/input. Incomplete analysis are balanced via a cation/ion selection of user.

Sample Date	09-30-2014	Time 14:01:31	Report Date 0	9-30-2014 ID		IC	
Sample Descri			report Date			Flows	
r i						Weight %	
						Brine Flow	
						(BPD)	
Calcium		Aluminum		H2S	0.00	Oil Flow (BPD)	
(as Ca)		(as Al)		(as H2S)	0.00	Gas Flow	
Magnesium (as Mg)		Manganese (as Mn)		Silica (as SiO2)		(MMCF/D)	
Barium (as Ba)		Zinc		Phosphate (as PO4)		C2 - C5 Acids	
Strontium		(es Zn) Lead		Polyphosphate		C2	
(as Sr)		(as Pb)	1	(as PO4)		C3	
Sodium		Boron		Bromine (as Br)			
(as Na)		(as B)		(as or) Fluoride		C4	
Potassium (as K)		Chloride (as Cl)		(as F)		CS I	
Lithium		Sulfate		Nitrate			
(as Li)		(as SO4)		(as NO3)	-		
Iron (as Fe)		Dissolved		Temperature (as °F)	77.00	Water#	
Ammonia		(as CO2) Bicarbonate		Density	1.00	1	G0 T0#
(as NH3)		(as HCO3)		(g/mL)	1.00	of	
pH	7.00	Carbonate		Pressure (Atm.)	1.00	1	
Induc time		(as CO3) Oxelete		pC02	0.00031620	ADD NEW	Deactivate
(seconds)		(as C2O4)		(Atm.)	0.00031620		
Comments				pH2S (Atm.)		PREVIOUS	Activate
				(-411.)			
K MIX	Change Units	Recalculate Display P	Result Print Res	ult Open Chem File	Save Chem File	Copy F	Paste Car

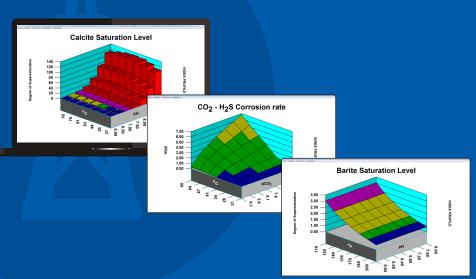
flexible input

Change analytical units and balancing ions on the fly.


output over range

Results displayed over range of parameters: temperature, pressure, %mixture.

1	■ DEPOSITION POTENTIAL INDICATORS VERSUS	TEMPERATURE						-	
	OPTIONS CHANGE RANGE								
									^
									- 117
	Sample ID: 0	Report	Date:09	-09-2014	Sample	d:08-28-	2014 at	1200	
									- 111
Α					PERATURE				- 111
	SATURATION LEVEL			140.00					- 117
	Calcite (CaCO3)	0.05	0.06		0.09				- 117
	Aragonite (CaCO3)	0.04	0.05			0.09			- 117
-\		0.00				0.00			- 117
	Strontianite (SrCO3)			0.00	0.01	0.01	0.01	0.01	- 117
Α.	Calcium oxalate	0.00		0.00	0.00	0.00	0.00		
	Magnesite (MgCO3)	0.01		0.02	0.02	0.03	0.03		
						0.02			
-	Gypsum (CaSO4*2H2O)	0.01		0.02	0.02	0.02	0.02		- 117
	Barite (BaSO ₄)	2.69	2.16	1.74	1.42	1.17	0.96		- 117
1	Celestite (SrSO ₄)	0.02		0.02	0.02	0.02	0.02		- 117
	Calcium phosphate	0.00				0.00			- 117
	Hydroxylapatite	0.00	0.00		0.00	0.00	0.00		- 117
	Fluorite (CaF ₂)	0.00		0.00	0.00	0.00	0.00		- 117
	Silica (SiO ₂)	0.08	0.07		0.05	0.04	0.03		- 117
	Brucite (Mg(OH) ₂)	0.00		0.00	0.00	0.00	0.00		- 117
	Magnesium silicate	0.00	0.00		0.00	0.00	0.00		- 117
	Ferric hydroxide	0.00	0.00		0.00	0.00	0.00		- 117
	Siderite (FeCO3)	2.23		4.10	5.42	7.02	8.96		- 117
	Strengite (FePO ₄)	0.00 0.00 0.00		0.00	0.00	0.00	0.00		
	Halite (NaCl)	0.00	0.00	0.00	0.00	0.00	0.00		
			0.00			0.00			
	Iron sulfide (FeS)	0.32	0.30	0.29	0.27	0.26	0.24	0.23	
	SIMPLE INDICES								
	Langelier Saturation				-0.9				
	Ryznar Stability		8.7		8.4	8.2	8.0		
	Oddo-Tomson	-1.2	-1.0		-0.7		-0.4		
	Stiff-Davis	-1.4	-1.1	-1.0	-0.7	-0.5	-0.2		
	Puckorius(Practical)				6.9	6.8			
	Larson-Skold	3.1	3.1	3.1	3.1	3.1	3.1	3.1	
	TOTAL VERSUS FREE IONS								
	Total Calcium	19.0	19.0	19.0	19.0	19.0	19.0	19.0	


concise summary

All editions feature a brief summary output of chemistry input and scale potential.

visual aids

2D & 3D color coded visual aids: Red Bad - Blue Good.

DownHole SAT A

Oilfield Chemistry & Treatment Modeling Software

	BASIC EDITION	FIELD ENGINEER	FORMULATOR EDITION	LABORATORY EDITION
CALCULATE SATURATION LEVELS	Х	Х	Х	Х
CO ₂ -H ₂ S CORROSION RATE MODULE	Х	Х	Х	Х
2D & 3D GRAPHS	Х	Х	Х	Х
SINGLE BRINE MODELING	Х	Х	Х	Х
INJECTION WELL MODELING	Х	Х	Х	Х
MULTI-MIX MODELING	Х	Х	Х	Х
SELECT PRODUCT FILE & MODEL TREATMENT		Х	Х	Х
GENERATE PRODUCT FILE / INPUT FORMULATION			Х	Х
CREATE CUSTOM INHIBITOR MODELS VIA LAB DATA				Х
DEVELOP CORROSION RATE MODELS				Х
BATCH PROCESSING	AVAILABLE	AVAILABLE	AVAILABLE	AVAILABLE

DownHole SAT Note that the control of the control o

BASIC EDITION	\$2,495.00 LICENSE FEE + \$495.00 ANNUAL MAINTENANCE			
FIELD ENGINEER EDITION	\$3,295.00 LICENSE FEE + \$599.00 ANNUAL MAINTENANCE			
FORMULATOR EDITION	\$4,995.00 LICENSE FEE + \$749.00 ANNUAL MAINTENANCE			
LABORATORY EDITION	\$7,495.00 LICENSE FEE + \$1,124.00 ANNUAL MAINTENANCE			
BATCH PROCESSING / CUSTOMIZATION	\$5,000 FEE			